a. (x-2)²=0, x1=x2=2∈R
b. (x+2)²-(√3)²=0
(x+2-√3)(x+2+√3)=0
x1=-2+√3, x2=-2-√3∈R
2 b. 4x²-4x-1=4x²-4x+1-2=(2x-1)²-2≥-2, deoarece (2x-1)²≥0
c. 9x²-6x+3=9x²-6x+1+2=(3x-1)²+2≥2 deoarece (3x-1)²≥0
3b. 1-x²-x=1-x²-x-1/4-3/4+1=5/4-(x²+x+1/4)=5/4-(x+1/2)²≤5/4 deoarece (x+1/2)≥0
c. -x²+6x-4=-(x²-6x+4)=-(x²-6x+9-5)=5-(x-3)²≤5 deoarece (x-3)²≥0