👤

Determinati n∈Z astfel incat numarul n²+n+6/n+1 sa fie intreg.

Răspuns :

(n²+n+6)/(n+1)= [n(n+1)+6]/(n+1)=n(n+1)/(n+1) + 6/(n+1)= n+6/(n+1)

D6={1,2,3,6}
1) n+1=1
n=0 apartine Z
2)n+1=2
n=1 apartine Z
3)n+1=3
n=2 apartine Z
4)n+1=6
n=5 apartine Z

Pentru n={-7,-4,-3,-2,0,1,2,5}