[tex] 3*5^{2n+1}+ 2^{3n+1}=15* 5^{2n}+2* 2^{3n}=15* 25^{n}+2* 8^{n}= [/tex]
[tex]15* (17+8)^{n}+2* 8^{n} =15*( M_{17}+ 8^{n})+2* 8^{n} = [/tex]
[tex]15* M_{17}+15* 8^{n} +2* 8^{n} =15* M_{17} +17* 8^{n} [/tex]
deci este divizibil cu 17.
Am folosit formula: [tex](a+b)^{n}= M_{a} + b^{n} = M_{b}+ a^{n} [/tex]