👤

un cub ABCDA'B'C'D' are aria sectiunii diagonale ACC'A' egala cu 36 radical din 2 cm patrati. Calculati: a) lungimea muchiei cubului
b) lungimea diagonalei cubului


Răspuns :

sectiunea diagonala este un dreptunghi cu latimea egala cu latura cubului l si lungimea egala cu diagonala unei fete = l√2

deci aria = 36√2 = l x l√2    ==> latura = √36 = 6 cm = muchia cubului

diagonala cubului AC' se calculeaza din triunghiul ACC', in care este ipotenuza
ACC' ² = AC² + CC'² 
AC este diagonala patratului = l√2 
CC' este muchia cubului = l
ACC' ² = (l√2)² + l² = l²(2+1)   ==> ACC" = √3l²= l√3 = 6√³ cm = 10,39 cm