👤
a fost răspuns

Distantele de la un punct interior, a unui triunghi echilateral, pina la laturi este de 1cm; 1cm si 4cm. Sa se afle aria triunghiului.

Răspuns :

C04f
Notam punctul cu M, si distantele la laturi cu; b; c; d ,  latura Δ echilateral =a si inaltimea=h. Unim M cu varfurile, ΔABC se descompune in ΔABM; ΔACM siΔBCM,suma ariilor lor = cu aria ΔABC. Deci aria Δ ABC=[tex] \frac{a*b}{2}+ \frac{a*c}{2}+ \frac{a*d}{2}= \frac{a(b+c+d)}{2} [/tex]=[tex] \frac{a*h}{2} [/tex], de unde ⇒h=a+b+c=6. Dar inaltimea triunghiului echilateral in functie de latura este h=[tex] \frac{l \sqrt{3} }{2} [/tex] deci
[tex]6= \frac{l \sqrt{3} }{2} [/tex] ⇒ l=4√3 si aria ΔABC=(4√3*6)/2=12√3 cm^2.