Δ =b²-4ac=36-4m = 4(9-m) >0
X₁=6+√4(9-m) /2 = 6+2√9-m/2=2 (3+√(9-m))/2=3+√(9-m)
X₂=6-√4(9-m)/2 = 6 - 2√9-m/2=2 (3- √(9-m))/2=3-√(9-m)
X₁=2 X₂
3+√(9-m)= 2[3-√(9-m)]
3+√(9-m)=6-2√(9-m)
3+√(9-m)+ 2√(9-m) =6
3√(9-m) = 6-3
3√(9-m)=3
√(9-m)=3:3
√(9-m)=1
9-m=1
m=9-1
m=8
verificare : x²-6x+8=0 ⇒ (x-4) * (x-2)=0 ⇒ x₁=4 sau x₂=2