Răspuns :
a) Aria paralelogramului se calculeaza cu formula:
[tex]A_{paralelogram}=L*h[/tex]
Unde L - lungimea laturii si h-inaltimea corespunzatoare laturii
Fiind paralelogram, are laturile paralele egale, deci:
AB = CD = 5 cm
Atunci:
[tex]A_{ABCD}=CD *AM = 5 * 8=\ \textgreater \ A_{ABCD}=40 \ cm^2[/tex]
b) AD = BC = 9 cm(ABCD paralelogram)
[tex]=\ \textgreater \ A_{ABCD}=BC*AN =\ \textgreater \ 36\ cm^2=9*AN=\ \textgreater \ AN=\frac{36}{9}=\ \textgreater \ \\ =\ \textgreater \ AN=4 \ cm[/tex]
c)
[tex]A_{ABCD}=AN * BC =\ \textgreater \ 96 \ cm^2=6*BC=\ \textgreater \ BC=96:6=\ \textgreater \ \\ =\ \textgreater \ BC=16 \ cm[/tex]
Perimetrul paralelogramului se calculeaza cu formula:
P = 2(L+l)=>P=2(16+8)=2*24=>P=48 cm
d) P = 2(L+l)=2(AD+DC) => 48 = 2(2DC+DC) => 2 * 3DC = 48 => 6DC = 48 => DC = 8 cm => AD = 2 * 8 = 16 cm = BC
Atunci aria paralelogramului este: [tex]A_{ABCD}=BC*AM=\ \textgreater \ A_{ABCD}=16*5=\ \textgreater \ A_{ABCD}=80 \ cm^2[/tex]
[tex]A_{paralelogram}=L*h[/tex]
Unde L - lungimea laturii si h-inaltimea corespunzatoare laturii
Fiind paralelogram, are laturile paralele egale, deci:
AB = CD = 5 cm
Atunci:
[tex]A_{ABCD}=CD *AM = 5 * 8=\ \textgreater \ A_{ABCD}=40 \ cm^2[/tex]
b) AD = BC = 9 cm(ABCD paralelogram)
[tex]=\ \textgreater \ A_{ABCD}=BC*AN =\ \textgreater \ 36\ cm^2=9*AN=\ \textgreater \ AN=\frac{36}{9}=\ \textgreater \ \\ =\ \textgreater \ AN=4 \ cm[/tex]
c)
[tex]A_{ABCD}=AN * BC =\ \textgreater \ 96 \ cm^2=6*BC=\ \textgreater \ BC=96:6=\ \textgreater \ \\ =\ \textgreater \ BC=16 \ cm[/tex]
Perimetrul paralelogramului se calculeaza cu formula:
P = 2(L+l)=>P=2(16+8)=2*24=>P=48 cm
d) P = 2(L+l)=2(AD+DC) => 48 = 2(2DC+DC) => 2 * 3DC = 48 => 6DC = 48 => DC = 8 cm => AD = 2 * 8 = 16 cm = BC
Atunci aria paralelogramului este: [tex]A_{ABCD}=BC*AM=\ \textgreater \ A_{ABCD}=16*5=\ \textgreater \ A_{ABCD}=80 \ cm^2[/tex]