Enunt:
Se considera triunghiul ABC si punctele D∈(AB), E∈(AC),
astfel incat DE||BC si AD/AB=3/5.
Determinati valoarea rapoartelor :
AD/DB, AE/EC, AC/EC, AE/AC.
Rezolvare:
[tex]\dfrac{AD}{AB}=\dfrac{3}{5} \stackrel{derivare}{\Longrightarrow}\ \dfrac{AD}{AB-AD}=\dfrac{3}{5-3} \Longrightarrow \dfrac{AD}{DB}=\dfrac{3}{2}[/tex]
[tex]DE || BC \stackrel{T. Thales}{\Longrightarrow}\ \dfrac{AE}{EC}=\dfrac{AD}{DB}=\dfrac{3}{2}[/tex]
[tex]\dfrac{AE}{EC}=\dfrac{3}{2}\stackrel{derivare}{\Longrightarrow} \ \dfrac{AE+EC}{EC}=\dfrac{3+2}{2} \Longrightarrow\\\;\\
\Longrightarrow \dfrac{AC}{EC}=\dfrac{5}{2}[/tex]