Răspuns :
avem: E(x)=2x+1
E(1)= (2*1)+1=3
E(2)=(2*2)+1=5
E(n)= 2n+1
√[E(1)+E(2)+...+E(n)]-2n ∈N
(3+5+...+(2n+1))=∑ (1+2k)=n²+2n
k=1
√n²=n
E(1)= (2*1)+1=3
E(2)=(2*2)+1=5
E(n)= 2n+1
√[E(1)+E(2)+...+E(n)]-2n ∈N
(3+5+...+(2n+1))=∑ (1+2k)=n²+2n
k=1
√n²=n
E(x) = 2 · x + 1
E( 1) = 2 ·1 + 1
E (2) = 2 ·2 + 1
E (3) = 2 · 3 +1
.................................
E (n) = 2 · n + 1
suma =E(1) + E(2) + E(3) + ........ + E(n) =
= 2 · ( 1 + 2 +3 + ... + n) + ( 1 + 1 + 1 + ... + 1) =
1 de n ori
suma = 2 ·( 1 + n)· n / 2 + 1 · n
= ( 1 + n) ·n · 2 : 2 + n
= ( 1 + n) · n + n = n + n² + n = n² + 2n
atunci : E(1) + E(2) + ..... + E(n) - 2n = n² + 2n - 2n = n²
√n² = n ∈ N
E( 1) = 2 ·1 + 1
E (2) = 2 ·2 + 1
E (3) = 2 · 3 +1
.................................
E (n) = 2 · n + 1
suma =E(1) + E(2) + E(3) + ........ + E(n) =
= 2 · ( 1 + 2 +3 + ... + n) + ( 1 + 1 + 1 + ... + 1) =
1 de n ori
suma = 2 ·( 1 + n)· n / 2 + 1 · n
= ( 1 + n) ·n · 2 : 2 + n
= ( 1 + n) · n + n = n + n² + n = n² + 2n
atunci : E(1) + E(2) + ..... + E(n) - 2n = n² + 2n - 2n = n²
√n² = n ∈ N