👤
a fost răspuns

aflati punctele de discontinuitate ale functiei:

Aflati Punctele De Discontinuitate Ale Functiei class=

Răspuns :

Alesyo
Pentru a afla punctele trebuie mai intai sa punem conditia de existenta!! pentru a le afla


CE Cand avem fractie diferit de 0

[tex]x^2-49 \neq 0[/tex]

[tex]x^2 \neq 49 x \neq +,- \sqrt{49}=+,-7[/tex]

De aici rezulta ca x∈ [tex]|R /{-7,7}-\ \textgreater \ |R[/tex]

Acuma verificam limitele la stanga si la dreapta

Limita la stanga e in punctul -7 deoarece e negativa <

Limita la dreapta e in punctul 7 deoarece e pozitiva
 
[tex]ls= \lim_{x \to \ - 7(x<-7)} \frac{8x}{x^2-49}= \frac{8*(-7)}{(-7)^2-49}= \frac{-56}{49-49}= \frac{-56}{0}=-56* \frac{1}{ 0_{-} }=-56*-[tex] \infty= \infty[/tex]

[tex]ld= \lim_{x \to \ -7(x\ \textgreater \ 7)} \frac{8x}{x^2-49}= \frac{8*(-7)}{(-7)^2-49}= \frac{-56}{49-49}= \frac{-56}{0}=-56* \frac{1}{0_{+} } = - \infty [/tex]

[tex]ls= \lim_{x \to \7 (x\ \textless \ 7)} \frac{8x}{x^2-49}= \frac{8*7}{7^2-49}= \frac{56}{49-49}= \frac{56}{0}=56* \frac{1}{0_{-}}=-\infty [/tex]

[tex]ld= \lim_{x \to \ 7 (x>7)} \frac{8x}{x^2-49}= \frac{8*(7)}{(7)^2-49}= \frac{56}{49-49}= \frac{56}{0}=56* \frac{1}{ 0_{+} }=\infty[/tex]

Cele doua limite sunt egale !! Succes,sper ca ai inteles