Răspuns :
AB = a ; AC= a√2 BC = a√3
verificare : BC² = AB² + AC² ⇒ ( a√3)² = a² + ( a√2)²
3a² =a² +2a² adevarat
⇒ Δ ABC drept ; m∡A =90°
inaltimea AP = a · a√2 / a√3 = a√2 / √3 = a√2√3 / √3√3 = a√6 / 3
BP² =AB² - AP² = a² - ( a√6 / 3)² = a² - 6a² /9 =( 9a² -6a²) /9 = 3a² /9
BP = a√3 / 3 si PC = a√3 - a√3 / 3 = 2a√3 / 3
in Δ APB , drept , MP = AP ·BP / AB = a√2 / 3
in ΔAPC , drept , PN = AP · PC / AC = 2a / 3
AMPN , cu MP ⊥ AB ; PN ⊥ AC
AMPN dreptunghi ; MN = diagonale dreptunghiului
MN² = MP² + PN² = ( a√2/3)² + ( 2a /3)² = 2a² / 9 + 4a² / 9
MN² =6a² / 9 ; MN = a√6 / 3
verificare : BC² = AB² + AC² ⇒ ( a√3)² = a² + ( a√2)²
3a² =a² +2a² adevarat
⇒ Δ ABC drept ; m∡A =90°
inaltimea AP = a · a√2 / a√3 = a√2 / √3 = a√2√3 / √3√3 = a√6 / 3
BP² =AB² - AP² = a² - ( a√6 / 3)² = a² - 6a² /9 =( 9a² -6a²) /9 = 3a² /9
BP = a√3 / 3 si PC = a√3 - a√3 / 3 = 2a√3 / 3
in Δ APB , drept , MP = AP ·BP / AB = a√2 / 3
in ΔAPC , drept , PN = AP · PC / AC = 2a / 3
AMPN , cu MP ⊥ AB ; PN ⊥ AC
AMPN dreptunghi ; MN = diagonale dreptunghiului
MN² = MP² + PN² = ( a√2/3)² + ( 2a /3)² = 2a² / 9 + 4a² / 9
MN² =6a² / 9 ; MN = a√6 / 3