a. ∫ f(x)·√xdx = ∫x³√x ·√x dx = ∫x³·√x²dx = ∫x³·x dx = ∫x⁴ dx = x⁵ / 5
numarul = ( 2⁵ - 1⁵ ) / 5 = ( 32 -1) / 5 = 31 / 5
b. F ' (x) =( 2/ 9 ·x⁴ x¹ / ² - 3 ) ' = ( 2 /9 x⁴ ⁺ ¹ /² - 3) ' =
= 2 /9 · ( 4 + 1 /2) · x ⁴ ⁺ ¹ /² ⁻¹ =
= 2 / 9 · 9 / 2 · x³ ⁺ ¹/²
= 2 · 9 / 9 · 2 · x³ · x¹ /²
= 18 / 18 · x³ ·√x
= x³·√x = f(x)