O rezolvare, ar fi aceasta:
[tex]a=\sqrt{9-2\sqrt{14}}=\sqrt{(\sqrt7-\sqrt2)^2}=|\sqrt7-\sqrt2|=\sqrt7-\sqrt2[/tex]
[tex]b=\sqrt{9+2\sqrt{14}}=\sqrt{(\sqrt7+\sqrt2)^2}=|\sqrt7+\sqrt2|=\sqrt7+\sqrt2[/tex]
[tex]a-b=\sqrt7-\sqrt2-\sqrt7-\sqrt2=-2\sqrt2\Rightarrow(a-b)^2=8[/tex]
[tex](a-b+2\sqrt2)^{100}=(-2\sqrt2+2\sqrt2)^{100}=0[/tex]