Răspuns :
n=2014+ (1 + 2 + 3+.....+2013+
+2013+ 2012+ 2011 +......+ 1)=
=2014+ (2014+2014+2014+.......+2014)
2013 termeni
=2014+2014*2013=2014*(1+2013)=
[tex]= 2014^{2} [/tex]
+2013+ 2012+ 2011 +......+ 1)=
=2014+ (2014+2014+2014+.......+2014)
2013 termeni
=2014+2014*2013=2014*(1+2013)=
[tex]= 2014^{2} [/tex]
[tex]\displaystyle 2014+(1+2+...+2013) \cdot 2=2014+ \frac{2013(2013+1)}{2} \cdot 2= \\ \\ =2014+ \frac{2013 \cdot 2014}{2} \cdot 2=2014+ \frac{4054182}{\not 2} \cdot \not 2= \\ \\ =2014+4054182=2014(1+2013)=2014 \cdot 2014=2014^2-p.p[/tex]