[tex] \frac{x+2}{x-1} - \frac{2x-1}{3} = \frac{x-1}{6} [/tex]
Aducem ecuatia la acelasi numitor.
[tex] \frac{6(x+2)}{6(x - 1)} - \frac{2(x-1)(2x-1)}{6(x - 1)} = \frac{(x-1)(x-1)}{6(x - 1)} [/tex]
[tex]6x+12 -2(2 x^{2} -3x + 1) = x^{2} -2x +1[/tex]
[tex]6x + 12 -4 x^{2} + 6x - 2 = x^{2} -2x + 1[/tex]
[tex]-4 x^{2} - x^{2} +6x+6x+2x + 12 - 2-1=0[/tex]
[tex]-5 x^{2} + 14x -9 =0[/tex]
[tex] x_{12} = \frac{-14 +/- \sqrt{196 -180} }{10}
[/tex]
Nu am terminat adunarea