Răspuns :
x- primul robinet
y- al 2lea robinet
z- al 3lea robinet
x+y=12
x+z=13
z+y=20
2x+2y+2z=12+13+20
2(x+y+z)=45
x+y+z=22h 30min
y- al 2lea robinet
z- al 3lea robinet
x+y=12
x+z=13
z+y=20
2x+2y+2z=12+13+20
2(x+y+z)=45
x+y+z=22h 30min
Cerinta se traduce matematic astfel:
[tex]robinet1 + robinet2 = \frac{1}{12}[/tex]
[tex]robinet1 + robinet3 = \frac{1}{15}[/tex]
[tex]robinet2 + robinet3 = \frac{1}{20}[/tex]
[tex]robinet1 + robinet2 + robinet3 = ?[/tex]
Sunt fractii de 1/ceva pentru ca robinetele actioneaza invers proportional. Mai simplu, cu cat ai mai multe robinete, cu atat dureaza mai putin sa umplii bazinul. Acel 1/ceva se poate pune pe ambele parti.
Adica putem scrie:
[tex]\frac{1}{robinet1 + robinet2} = 12[/tex] (1 bazin la robinetul 1 si robinetul 2 este umplut in 12 ore)
sau
[tex]robinet1 + robinet2 = \frac{1}{12}[/tex] (Robinetul 1 si robinetul 2 umplu 1/12 din bazin la fiecare ora)
Prima varianta este mai aproape de cum s-a exprimat cerinta, dar a 2-a ne ajuta mai mult cand scriem relatiile.
Adunam relatiile si avem:
[tex]2robinet1 + 2robinet2 + 2robinet3 = \frac{1}{12} + \frac{1}{15} + \frac{1}{20}[/tex]
[tex]2(robinet1+robinet2+robinet3) = \frac{1}{5}[/tex]
[tex]2(robinet1+robinet2+robinet3) = \frac{1}{10}[/tex]
In alte cuvinte, cele 3 robinete vor umple bazinul in doar 10 ore. Ne verificam si observam ca actiunea celor 3 robinete e mai rapida decat daca le-am lua cate 2, cum ne asteptam.
Mult noroc,
Mexic
[tex]robinet1 + robinet2 = \frac{1}{12}[/tex]
[tex]robinet1 + robinet3 = \frac{1}{15}[/tex]
[tex]robinet2 + robinet3 = \frac{1}{20}[/tex]
[tex]robinet1 + robinet2 + robinet3 = ?[/tex]
Sunt fractii de 1/ceva pentru ca robinetele actioneaza invers proportional. Mai simplu, cu cat ai mai multe robinete, cu atat dureaza mai putin sa umplii bazinul. Acel 1/ceva se poate pune pe ambele parti.
Adica putem scrie:
[tex]\frac{1}{robinet1 + robinet2} = 12[/tex] (1 bazin la robinetul 1 si robinetul 2 este umplut in 12 ore)
sau
[tex]robinet1 + robinet2 = \frac{1}{12}[/tex] (Robinetul 1 si robinetul 2 umplu 1/12 din bazin la fiecare ora)
Prima varianta este mai aproape de cum s-a exprimat cerinta, dar a 2-a ne ajuta mai mult cand scriem relatiile.
Adunam relatiile si avem:
[tex]2robinet1 + 2robinet2 + 2robinet3 = \frac{1}{12} + \frac{1}{15} + \frac{1}{20}[/tex]
[tex]2(robinet1+robinet2+robinet3) = \frac{1}{5}[/tex]
[tex]2(robinet1+robinet2+robinet3) = \frac{1}{10}[/tex]
In alte cuvinte, cele 3 robinete vor umple bazinul in doar 10 ore. Ne verificam si observam ca actiunea celor 3 robinete e mai rapida decat daca le-am lua cate 2, cum ne asteptam.
Mult noroc,
Mexic