Răspuns :
1001=7×11×13
abcabc=100000a+10000b+1000c+100a+10b+c
abcabc=100100a+10010b+1001c
abcabc=1001×(100a+10b+c)
abcabc=7×11×13×(100a+10b+c) rezulta ca numerele de forma abcabc sunt divizibile cu 7,11 si 13
abcabc=100000a+10000b+1000c+100a+10b+c
abcabc=100100a+10010b+1001c
abcabc=1001×(100a+10b+c)
abcabc=7×11×13×(100a+10b+c) rezulta ca numerele de forma abcabc sunt divizibile cu 7,11 si 13
1. 1 001=91·11
=7·13·11
2.
abcabc : 7
abcabc :11
abcabc :13
abcabc =a·100 000+ b·10 000+c·1 000+a·100+b·10+c·1
=a(100 000+ 1 000)+b(10 000+ 100)+c(1 000+ 1)
=a·101 000+b·10 100+c·1 001
=a•1 010•100+ b•1 010•10+ c•1 010
=1 010•(100a+10•b+1•c)
=1 010•abc
=7·13·11•abc
7·13·11•abc
7:7
13:13 ⇒7·13·11•abc :7·11·13
11:11
=7·13·11
2.
abcabc : 7
abcabc :11
abcabc :13
abcabc =a·100 000+ b·10 000+c·1 000+a·100+b·10+c·1
=a(100 000+ 1 000)+b(10 000+ 100)+c(1 000+ 1)
=a·101 000+b·10 100+c·1 001
=a•1 010•100+ b•1 010•10+ c•1 010
=1 010•(100a+10•b+1•c)
=1 010•abc
=7·13·11•abc
7·13·11•abc
7:7
13:13 ⇒7·13·11•abc :7·11·13
11:11