Răspuns :
S=1+2+3+......715S Gauss are formula:[tex] \frac{n(n+1)}{2} [/tex]
unde n=ultimul numar al sirului
[tex]S= \frac{n(n+1)}{2}=\frac{715(715+1)}{2}= \frac{715*716}{2} =255970[/tex]
unde n=ultimul numar al sirului
[tex]S= \frac{n(n+1)}{2}=\frac{715(715+1)}{2}= \frac{715*716}{2} =255970[/tex]