Răspuns :
Corect:
[tex]2(1-3x) \leq 1/ :2[/tex] ⇔
[tex] 1-3x \leq \frac{1}{2} /(-1)[/tex] ⇔ cand a scazut 1 in membrul stang a gresit si a adunat 1 in membrul drept
[tex]-3x \leq - \frac{1}{2} /:(-3)[/tex] ⇔ cand a impartit la (-3) , nu a schimbat semnul inecuatiei
[tex]x \geq \frac{1}{6} [/tex]
[tex]2(1-3x) \leq 1/ :2[/tex] ⇔
[tex] 1-3x \leq \frac{1}{2} /(-1)[/tex] ⇔ cand a scazut 1 in membrul stang a gresit si a adunat 1 in membrul drept
[tex]-3x \leq - \frac{1}{2} /:(-3)[/tex] ⇔ cand a impartit la (-3) , nu a schimbat semnul inecuatiei
[tex]x \geq \frac{1}{6} [/tex]
2x(1-3x)[tex] \leq [/tex] [tex] \frac{1}{2} [/tex] :2
1-3x[tex] \leq [/tex] [tex] \frac{1}{2} [/tex]
-3x [tex] \leq [/tex] -[tex] \frac{1}{2} [/tex] : (-3) /(-1)
3x [tex] \leq [/tex] [tex] \frac{1}{2} [/tex] : 3
x[tex] \geq [/tex] [tex] \frac{1}{6} [/tex]
1-3x[tex] \leq [/tex] [tex] \frac{1}{2} [/tex]
-3x [tex] \leq [/tex] -[tex] \frac{1}{2} [/tex] : (-3) /(-1)
3x [tex] \leq [/tex] [tex] \frac{1}{2} [/tex] : 3
x[tex] \geq [/tex] [tex] \frac{1}{6} [/tex]