Răspuns:
Explicație pas cu pas:
E(x)=[1/x(x+1)+1/(x+1)(x+2)]·(x+2)(x+3)/4 ,x∈R\{-2,-1.0}
E(x)=[((x+2)+x]/x(x+1)(x+2)·(x+2)(x+3)/4=(x+2+x)/x(x+1)(x+2)· (x+2)(x+3)/4=
=2(x+1)/x(x+1)·(x+3)/4=(x+3)/2x
a)E(1)=(1+3)/2·1=4/2=2
b)E(b)=(n+3)/2n=1/2+3/2n ⇒2n∈{-3,-1,1,3}
2n=3 ⇒n=3/2 nu convine pt ca n ∈Z
2n=-3 ⇒n=-3/2 nu convine pt ca n∈Z
n=1 ⇒E(1)=2
n=-1 ⇒E(-1)=1/2-3/2=-1 ⇒n∈{-1,1}