Răspuns :
= [ 1 /x + 1 /y ] · [ 1 /x² - 1 / xy + 1 /y² ] = formula binom
de tipul a³ +b³
= ( 1 /x) ³ + (1 /y) ³ =
= 1 /x³ + 1 / y³
de tipul a³ +b³
= ( 1 /x) ³ + (1 /y) ³ =
= 1 /x³ + 1 / y³
[tex] (x^-^1+y^-^1)[x^-^2-(xy)^-^1+y^-^2]=( \frac{1}{x} + \frac{1}{y} )( \frac{1}{x^2} - \frac{1}{xy} + \frac{1}{y^2} )= \\ \\ = \frac{1}{x^3} - \frac{1}{x^2y} + \frac{1}{xy^2} + \frac{1}{x^2y} - \frac{1}{xy^2} + \frac{1}{y^3} = \frac{1}{x^3} + \frac{1}{y^3} [/tex]