Răspuns :
Răspuns:
Explicație pas cu pas:
f'(x) = (2x - x/(x+2))'
f'(x) = [(2x²+3x)/(x+2)]'
f'(x) = [(4x+3)·(x+2) -(2x²+3x)·1]/(x+2)²
f'(x) = (4x²+11x+6-2x²-3x)/(x+2)²
f'(x) = (2x²+8x+6)/(x+2)² = 2(x²+4x+3)/(x+2)²
f'(x) = 2(x+1)(x+3)/(x+2)²
Răspuns:
Explicație pas cu pas:
f'(x) = (2x - x/(x+2))'
f'(x) = [(2x²+3x)/(x+2)]'
f'(x) = [(4x+3)·(x+2) -(2x²+3x)·1]/(x+2)²
f'(x) = (4x²+11x+6-2x²-3x)/(x+2)²
f'(x) = (2x²+8x+6)/(x+2)² = 2(x²+4x+3)/(x+2)²
f'(x) = 2(x+1)(x+3)/(x+2)²