Răspuns :
Răspuns:
[tex]\boldsymbol{c) \ \red{ \bigg(\dfrac{3}{2}\bigg)^{16} }}[/tex]
[tex]\boldsymbol{d) \ \red{1}}[/tex]
Explicație pas cu pas:
La punctul c) aplicăm formula:
[tex]\boldsymbol{(a^{m})^{n} = a^{m \cdot n}}[/tex]
Astfel avem:
[tex]\bigg[\bigg(\dfrac{3}{2}\bigg)^2\bigg]^8 = \bigg(\dfrac{3}{2}\bigg)^{2\cdot8} = \bigg(\dfrac{3}{2}\bigg)^{16}[/tex]
***
La punctul d) nu vom calcula deoarece avem paranteza la puterea 0, iar orice număr ridicat la puterea 0 este 1. Deci:
[tex]\bigg(\dfrac{111}{8} - \dfrac{39}{12} - \dfrac{7}{4}\bigg)^0 = \bf 1[/tex]
[tex]\it c)\ \ \bigg[\bigg(\dfrac{3}{2}\bigg)^2\bigg]^8=\bigg(\dfrac{3}{2}\bigg)^{2\cdot8}=\bigg(\dfrac{3}{2}\bigg)^{16}\\ \\ \\ d)\ \ \bigg(\dfrac{111}{8}-\dfrac{\ \ 39^{(3}}{12}-\dfrac{7}{4}\bigg)^0=\bigg(\dfrac{111}{8}-\dfrac{\ 13}{4}-\dfrac{7}{4}\bigg)^0=\bigg(\dfrac{111}{8}-\dfrac{^{2)}20}{\ 4}\bigg)^0=\bigg(\dfrac{71}{8}\bigg)^0[/tex]