👤

a)Aratati ca daca (2a+3b+c) este divizibil cu 7 , atunci 7 divide abc in baza zece
b)Aratati ca daca 7 divide (6a+2b+3c+d) , atunci abcd in baza zece divizibil cu 7.


Răspuns :

[tex]\overline{abc}=100a+10b+c[/tex]

100a+10b+c=98a+2a+7b+3b+c

100a+10b+c=98a+7b+2a+3b+c

100a+10b+c=7(14a+b)+2a+3b+c

7 | 2a+3b+c

7 | 7(14a+b) ⇒ 7 | 7(14a+b)+2a+3b+c⇒ [tex]\overline{abc}[/tex] este divizibil cu 7

[tex]\overline{abcd}=1000a+100b+10c+d[/tex]

1000a+100b+10c+d=994a+6a+98b+2b+7c+3c+d

1000a+100b+10c+d=994a+98b+7c+6a+2b+3c+d

1000a+100b+10c+d=7(142a+14b+c)+6a+2b+3c+d

7 | 6a+2b+3c+d

7 | 7(142a+14b+c)⇒ 7 | 7(142a+14b+c)+6a+2b+3c+d⇒[tex]\overline{abcd}[/tex] este divizibil cu 7

Un alt exercitiu gasesti aici: https://brainly.ro/tema/1047790

#SPJ2