Răspuns :
[1/√(x-1)]²-[1/√(x+1)]²=1/(x-1)-1/(x+1)= (x+1)/(x²-1)-(x-1)/(x²-1)= (x+1-x+1)/(x²-1)= 2/(x²-1)
a)√(4+√7)=
A=4, B=7, C=√(A²-B)=√(4²-7)=√9=3
√(4+√7)=[√(A+C)/2]+[√(A-C)/2]=√(4+3)/2+√(4-3)/2=√(7/2)+√(1/2)=(√7·√2)/2+√2/2=(√14+√2)/2
√(4-√7)=√(7/2)-√(1/2)=(√14-√2)/2
(√(4+√7)+√(4-√7)²=[(√14+√2)/2+(√14-√2)/2]²=[(√14+√2+√14-√2)/2]²=(2√14/2)²=√14²=14
A=4, B=7, C=√(A²-B)=√(4²-7)=√9=3
√(4+√7)=[√(A+C)/2]+[√(A-C)/2]=√(4+3)/2+√(4-3)/2=√(7/2)+√(1/2)=(√7·√2)/2+√2/2=(√14+√2)/2
√(4-√7)=√(7/2)-√(1/2)=(√14-√2)/2
(√(4+√7)+√(4-√7)²=[(√14+√2)/2+(√14-√2)/2]²=[(√14+√2+√14-√2)/2]²=(2√14/2)²=√14²=14