Răspuns :
a.) [tex] \frac{x}{2x+1} [/tex] + [tex] \frac{1}{2x+1} [/tex] + [tex] \frac{3x+1}{2x+1} [/tex] =
= [tex] \frac{x+1+3x+1}{2x+1} [/tex] =
= [tex] \frac{4x+2}{2x+1} [/tex]=
= [tex] \frac{2(2x+1)}{2x+1} [/tex]=
simplificam (2x+1)
=2
b.) [tex] \frac{3a+2b}{a+b} [/tex] + [tex] \frac{2a+3b}{a+b} [/tex] =
= [tex] \frac{3a+2b+2a+3b}{a+b} [/tex]=
= [tex] \frac{5a+5b}{a+b} [/tex]=
= [tex] \frac{5(a+b)}{a+b} [/tex]=
simplificam cu (a+b)
=5
c.) [tex] \frac{abc}{999} [/tex] + [tex] \frac{cab}{999} [/tex] + [tex] \frac{bca}{999} [/tex] =
= [tex] \frac{abc+cab+bca}{999} [/tex] =
abc=cab=bca
= [tex] \frac{3abc}{999} [/tex] =
= [tex] \frac{abc}{333} [/tex]
d.) [tex] \frac{5a+3}{3a+6} [/tex] - [tex] \frac{3a}{3a+6} [/tex] + [tex] \frac{1}{3a+6} [/tex] =
=[tex] \frac{5a+3-3a+1}{3a+6} [/tex] =
=[tex] \frac{2a+4}{3a+6} [/tex] =
=[tex] \frac{2(a+2)}{3(a+2)} [/tex] =
simplificam (a+2)
=[tex] \frac{2}{3} [/tex]
e.) [tex] \frac{2014}{2014} [/tex] - [tex] \frac{2013}{2014} [/tex] + [tex] \frac{2012}{2014} [/tex] - ... - [tex] \frac{3}{2014} [/tex] + [tex] \frac{2}{2014} [/tex] - [tex] \frac{1}{2014} [/tex]=
= [tex] \frac{2014-2013+2012-2011+...+4-3+2-1}{2014} [/tex] =
efectuam scaderile
= [tex] \frac{1+1+...+1+1}{2014} [/tex]=
(1+1+...+1+1) sunt [tex] \frac{2014}{2} [/tex] = 1007 numere
folosim formula lui Gauss : [tex] \frac{n(n+1)}{2} [/tex] = [tex] \frac{1007(1007+1)}{2} [/tex] = [tex] \frac{1007 ori 1008 )}{2} [/tex] = [tex] \frac{1015056}{2} [/tex]= 507528
= [tex] \frac{507528}{2014} [/tex]=
=252
= [tex] \frac{x+1+3x+1}{2x+1} [/tex] =
= [tex] \frac{4x+2}{2x+1} [/tex]=
= [tex] \frac{2(2x+1)}{2x+1} [/tex]=
simplificam (2x+1)
=2
b.) [tex] \frac{3a+2b}{a+b} [/tex] + [tex] \frac{2a+3b}{a+b} [/tex] =
= [tex] \frac{3a+2b+2a+3b}{a+b} [/tex]=
= [tex] \frac{5a+5b}{a+b} [/tex]=
= [tex] \frac{5(a+b)}{a+b} [/tex]=
simplificam cu (a+b)
=5
c.) [tex] \frac{abc}{999} [/tex] + [tex] \frac{cab}{999} [/tex] + [tex] \frac{bca}{999} [/tex] =
= [tex] \frac{abc+cab+bca}{999} [/tex] =
abc=cab=bca
= [tex] \frac{3abc}{999} [/tex] =
= [tex] \frac{abc}{333} [/tex]
d.) [tex] \frac{5a+3}{3a+6} [/tex] - [tex] \frac{3a}{3a+6} [/tex] + [tex] \frac{1}{3a+6} [/tex] =
=[tex] \frac{5a+3-3a+1}{3a+6} [/tex] =
=[tex] \frac{2a+4}{3a+6} [/tex] =
=[tex] \frac{2(a+2)}{3(a+2)} [/tex] =
simplificam (a+2)
=[tex] \frac{2}{3} [/tex]
e.) [tex] \frac{2014}{2014} [/tex] - [tex] \frac{2013}{2014} [/tex] + [tex] \frac{2012}{2014} [/tex] - ... - [tex] \frac{3}{2014} [/tex] + [tex] \frac{2}{2014} [/tex] - [tex] \frac{1}{2014} [/tex]=
= [tex] \frac{2014-2013+2012-2011+...+4-3+2-1}{2014} [/tex] =
efectuam scaderile
= [tex] \frac{1+1+...+1+1}{2014} [/tex]=
(1+1+...+1+1) sunt [tex] \frac{2014}{2} [/tex] = 1007 numere
folosim formula lui Gauss : [tex] \frac{n(n+1)}{2} [/tex] = [tex] \frac{1007(1007+1)}{2} [/tex] = [tex] \frac{1007 ori 1008 )}{2} [/tex] = [tex] \frac{1015056}{2} [/tex]= 507528
= [tex] \frac{507528}{2014} [/tex]=
=252