Răspuns :
inecutia = studiu de semn in R
a. x² -4 ≤ 0 cu radacinile x₁ = - 2 si x₂ = 2
x - ∞ -2 2 +∞
------------------------------------------------------------
x² -4 + 0 - 0 + daca x ∈ [ - 2 , 2 ]
b. 128 - 2x² ≥ 0 I :2 ⇒ 64 - x² ≥ 0
cu radacinile x₁= - 8 si x₂ =8
x - ∞ -8 8 +∞
--------------------------------------------------------------------------------
64-x²≥0 - 0 + 0 - daca x∈ [-8 , 8 ]
c. ( 1- √3) x² + 3x - 1 - √3 < 0 Δ = 9 - 4(1-√3) ( -1 -√3) =
Δ = 9 + 4·( -2) = 1
x₁ = ( -3 - 1 ) /2(1-√3) = -2 ( 1 +√3) /( 1 -√3)·( 1+√3) = 1 +√3
x₂=( -3 +1 ) /2( 1-√3) = - 1/( 1 - √3) = -( 1 +√3) / ( 1 - √3) ·( 1 +√3) = ( 1+√3) /2
x - ∞ ( 1+√3)/2 1+√3 +∞
--------------------------------------------------------------------------------------------
ex.<0 - 0 + 0 - -
x ∈ ( - ∞ , ( 1+√3) /2 ) ) U ( 1+√3 , +∞)
a. x² -4 ≤ 0 cu radacinile x₁ = - 2 si x₂ = 2
x - ∞ -2 2 +∞
------------------------------------------------------------
x² -4 + 0 - 0 + daca x ∈ [ - 2 , 2 ]
b. 128 - 2x² ≥ 0 I :2 ⇒ 64 - x² ≥ 0
cu radacinile x₁= - 8 si x₂ =8
x - ∞ -8 8 +∞
--------------------------------------------------------------------------------
64-x²≥0 - 0 + 0 - daca x∈ [-8 , 8 ]
c. ( 1- √3) x² + 3x - 1 - √3 < 0 Δ = 9 - 4(1-√3) ( -1 -√3) =
Δ = 9 + 4·( -2) = 1
x₁ = ( -3 - 1 ) /2(1-√3) = -2 ( 1 +√3) /( 1 -√3)·( 1+√3) = 1 +√3
x₂=( -3 +1 ) /2( 1-√3) = - 1/( 1 - √3) = -( 1 +√3) / ( 1 - √3) ·( 1 +√3) = ( 1+√3) /2
x - ∞ ( 1+√3)/2 1+√3 +∞
--------------------------------------------------------------------------------------------
ex.<0 - 0 + 0 - -
x ∈ ( - ∞ , ( 1+√3) /2 ) ) U ( 1+√3 , +∞)