Răspuns :
[tex] \frac{1}{1*2} = \frac{1}{1} - \frac{1}{2} [/tex]
[tex] \frac{1}{2*3} = \frac{1}{2} - \frac{1}{3} [/tex]
[tex] \frac{1}{3*4} = \frac{1}{3} - \frac{1}{4} [/tex]
....
[tex] \frac{1}{2010*2011} = \frac{1}{2010} - \frac{1}{2011} [/tex]
[tex] \frac{1}{2011*2012} = \frac{1}{2011} - \frac{1}{2012} [/tex]
+
[tex] \frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4}+...+ \frac{1}{2010*2011} + \frac{1}{2011*2012} = \frac{1}{1} - \frac{1}{2012} = \frac{2012-1}{2012} = \frac{2011}{2012} [/tex]<1
[tex] \frac{1}{2*3} = \frac{1}{2} - \frac{1}{3} [/tex]
[tex] \frac{1}{3*4} = \frac{1}{3} - \frac{1}{4} [/tex]
....
[tex] \frac{1}{2010*2011} = \frac{1}{2010} - \frac{1}{2011} [/tex]
[tex] \frac{1}{2011*2012} = \frac{1}{2011} - \frac{1}{2012} [/tex]
+
[tex] \frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4}+...+ \frac{1}{2010*2011} + \frac{1}{2011*2012} = \frac{1}{1} - \frac{1}{2012} = \frac{2012-1}{2012} = \frac{2011}{2012} [/tex]<1
[tex]Folosim \;formula: \\ \\ \frac{1}{n(n+1)}= \frac{1}{n} - \frac{1}{n+1} \\ \\ \frac{1}{1\cdot2}+ \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\hdots +\frac{1}{2011\cdot22012}= \\ \\ \frac{1}{1}- \frac{1}{2}+ \frac{1}{2}- \frac{1}{3} +\frac{1}{3}- \frac{1}{4}+\hdots \frac{1}{2011}- \frac{1}{2012}= \\ \\ \frac{1}{1}- \frac{1}{2012}=\frac{2012}{2012}- \frac{1}{2012}=\frac{2012-1}{2012}=\boxed{\frac{2011}{2012}\ \textless \ 1} \\ cctd[/tex]