din trapezul drept T₁T₂O₂O₁ formam Δ drept O₁O₂M
MO₁ = O₁T₁ - O₂T₂ = 10 cm - 5 cm = 5 cm
MO₂ = T₁T₂ = √13² -5²=√169-25 = √144 cm = 12 cm
2. ΔMT₂O₂ asemenea Δ MT₁O₁
MT₂ / MT₁ = r₂/r ₁ = MO₂ / MO₁
6√3 / 8√3 =6 /r₁ ⇒ 6/8 = 6 / r₁ ; r₁ = 8 cm
MO₂ = √T₂M² + T₂O₂² = √36·3 + 36 = √108 +36=√144 = 12 cm
O₁M= √T₁M²+T₁O₁² = √64·3 + 64 = √256 =16 cm
O₁O₂ = MO₁ - MO₂ = 16cm - 12 cm = 4cm