Răspuns :
2. fie AA'_|_BC BB'_|_AC CC'_|_AB
in Δ BB'A mas < B'AB = mas < ABB' = 45*
B'A² = B'B² = AB²/2 ⇒ BB' =√36 BB' = 6 cm
BC² = B'B² + B'C² = 36 + 324 = 660 BC = 6√10cm
Δ AA'C ≈ Δ BB'C AA'/ BB' = AC/BC AA' = 6·12/6√10 AA' = 6√/10 /5 cm
ΔABA' ≈ Δ C'BC AA'/CC' = AB/BC CC' = (6√10 /5 ·6√2)/6√10 CC' = 6√2 /5 cm
3. ducemCC'_|_AB C'B = BC/2 = 12cm C'C² = 576 - 144 C'C = h = 12√3 cm
Δ ABC C'C² = AC'·C'B AC' = 432/12 = 36cm ⇒ AB = B = 36+ 12 = 48cm
CD = b = 48 - 2·12 = 24cm
P = 48 + 2·24 + 24 = 120cm A = (48+24)12√3 /2 = 432√3 cm²
AC² = BD² = 48² - 24² = 3·576 AC = BD = 24√3 cm
4. daca CC'_|_AB CC' = C'B = 6cm
BC² = 2·36 BC = 6√2 cm P = 14 + 6√2 + 8 +6 = 2(14+3√2) cm
A = (14+8)·6 /2 A = 66cm²
AC²= 64+36 AC = 10 cm
BD² = 196 + 36 BD = 2√58 cm
Δ MDC ≈ ΔMAB MD/(MD + AD) = DC/AB = MC/ (MC+CB) = 4/7
7MD = 4MD + 24 MD = 8cm
7MC = 4MC + 24√2 MC = 8√2 cm P = 16 + 8√2 = 8(2+√2) cm
in Δ BB'A mas < B'AB = mas < ABB' = 45*
B'A² = B'B² = AB²/2 ⇒ BB' =√36 BB' = 6 cm
BC² = B'B² + B'C² = 36 + 324 = 660 BC = 6√10cm
Δ AA'C ≈ Δ BB'C AA'/ BB' = AC/BC AA' = 6·12/6√10 AA' = 6√/10 /5 cm
ΔABA' ≈ Δ C'BC AA'/CC' = AB/BC CC' = (6√10 /5 ·6√2)/6√10 CC' = 6√2 /5 cm
3. ducemCC'_|_AB C'B = BC/2 = 12cm C'C² = 576 - 144 C'C = h = 12√3 cm
Δ ABC C'C² = AC'·C'B AC' = 432/12 = 36cm ⇒ AB = B = 36+ 12 = 48cm
CD = b = 48 - 2·12 = 24cm
P = 48 + 2·24 + 24 = 120cm A = (48+24)12√3 /2 = 432√3 cm²
AC² = BD² = 48² - 24² = 3·576 AC = BD = 24√3 cm
4. daca CC'_|_AB CC' = C'B = 6cm
BC² = 2·36 BC = 6√2 cm P = 14 + 6√2 + 8 +6 = 2(14+3√2) cm
A = (14+8)·6 /2 A = 66cm²
AC²= 64+36 AC = 10 cm
BD² = 196 + 36 BD = 2√58 cm
Δ MDC ≈ ΔMAB MD/(MD + AD) = DC/AB = MC/ (MC+CB) = 4/7
7MD = 4MD + 24 MD = 8cm
7MC = 4MC + 24√2 MC = 8√2 cm P = 16 + 8√2 = 8(2+√2) cm