b² + c² = 2a²
se duc BB'_|_AC si CC'_|_AB
in ΔABB' (mas<A = 30*) BB' = AB/2 = c/2 AB' = c√3 / 2
in Δ BB'C
B'C² = a² - c²/4
sinC = BB'/a = c/2a cosC = B'C/a = √(4a² - c²) /2a
cos2C = cos²C - sin²C = (4a² - c²)/4a² - c² / 4a² = (4a² -2c²) /4a² = (2a² - c²) 2a²
in Δ ACC' CC' = b/2 AC' = b√3 /2 BC' = √(a² - b²/4) = √(4a² -b²) / 2
sinB = CC'/a = b/2a cosB = BC'/a = √(4a² - b²) /2a
cos2B = (4a² -b²) / 4a² - b² /4a² = (4a² - 2b²) /4a² = (2a² - b²) /2a²
cos2B + cos2C = (2a² - b² + 2a² - c²) /2a² = (c² + b²) / 2a² = 2a² / 2a² = 1