Răspuns :
a) S = -(3+2+1) + 0 + 1+2+...+27 =
= -6 + (27*28):2 = -6 + 27 * 14 = -6 +378 = 372
b) |2z-1| = 3 =>
I) 2z - 1 = 3 sau
II) 2z - 1 = -3
I) 2z - 1 =3 => 2z = 4 => z = 2
II) 2z - 1 = -3 => 2z = -3+1 = -2 => z = -1
=> z ∈{2, -1}
= -6 + (27*28):2 = -6 + 27 * 14 = -6 +378 = 372
b) |2z-1| = 3 =>
I) 2z - 1 = 3 sau
II) 2z - 1 = -3
I) 2z - 1 =3 => 2z = 4 => z = 2
II) 2z - 1 = -3 => 2z = -3+1 = -2 => z = -1
=> z ∈{2, -1}
[tex]a)~S=(1+2+3+...+27)-(1+2+3)= \\ ~~~~~~~= \frac{27*28}{2}-6= \\ ~~~~~~~=27*14-6= \\ ~~~~~~~= 372.[/tex]
[tex]b)~|2z-1|=3 \Rightarrow~2z-1=3~sau~2z=1=-3. \\ \\ 2z-1=3 \Rightarrow 2z=4 \Rightarrow z=2. \\ 2z-1=-3 \Rightarrow 2z=-2 \Rightarrow z=-1. \\ \\ \underline{Solutie}: \boxed{x \in \{-1;2\}}.[/tex]
[tex]b)~|2z-1|=3 \Rightarrow~2z-1=3~sau~2z=1=-3. \\ \\ 2z-1=3 \Rightarrow 2z=4 \Rightarrow z=2. \\ 2z-1=-3 \Rightarrow 2z=-2 \Rightarrow z=-1. \\ \\ \underline{Solutie}: \boxed{x \in \{-1;2\}}.[/tex]