Răspuns:
Explicație pas cu pas:
(1+√5)² = 1²+2·1·√5+(√5)² = 1+2√5+5 = 6+2√5
Folosim formulele
(a+b)² = a²+2ab+b² ; (a-b)² = a²-2ab+b²
(√2+√3)² = 2+2√6+3 = 5+2√6
(√7 - 2√3)² = 7-4√21+12 = 19-4√21
(2+2√2)² = 4+8√2+8 = 12+8√2 = 4(3+2√2)
(4√3+5√2)² = 16·3+2·20·√6+25·2 = 48+40√6+50 = 98+40√6
(8-3√5)² = 64-16·3√5+9·5 = 109-48√5
(4x-a)(4x+a+2x)(x-a) = (4x-a)(6x+a)(x-a) =
= (24x²-2ax-a²)(x-a) = 24x³-24ax²-2ax²+2a²x-a²x+a³=
= 24x³-26ax²+a²x+a³
(x-2)(x+2-x)(x+5) = (x-2)·2·(x+5) = (2x-4)(x+5) =
= 2x²+10x-4x-20 = 2x²+6x-20