👤
Nutellaxox
a fost răspuns

Se considera ecuatia mx²+nx+1=0, unde m,n ∈ R.
a)Rezolvati ecuatia pentru m=-1 si n-0
b) Determinati m,n ∈ Q, stiind ca 1+√2 este solutie a ecuatiei.


Răspuns :

a) -x² + 1 = 0      (1-x)(1+x ) = 0    1-x = 0    x1 = 1    1+x = 0      x2= -1
b)  m(3+2√2) + (1+√2)n + 1 = 0
3m + 2√2·m + n + n√2 = - 1
3m + n = - 1
2m + n = 0
m = -1    n = 2
a)M=-1
n=0
Deci -x²+0+1=0
-x²+1=0
-x²=-1
x²=1⇒x∈{1,-1}
b)S=1+√2⇒x=1+√2
m(1+√2)²+n(1+√2)+1=0
m(1+2+2√2)+n+n√2+1=0
3m+2m√2+n+n√2+1=0
3m+n+√2(2m+n)=-1+0√2
Si avem sistemul:[tex] \left \{ {{3m+n=-1} \atop {2m+n=0}} \right. [/tex]
Le scadem si obtinem:m=-1
3m+n=-1
-3+n=-1⇒n=2