👤
a fost răspuns

Calculați produsele de matrice [tex]A \cdot B[/tex] (dacă au sens), unde:
1) [tex]A=\left([tex]\begin{array}{ll}-1 & 3\end{array}\right), B=\left(\begin{array}{r}4 \\ -2\end{array}\right)[/tex]
2) [tex]A=\left(\begin{array}{lll}1 & \sqrt{2} & -\sqrt{3}\end{array}\right), B=\left(\begin{array}{r}-1 \\ 0 \\ \sqrt{3}\end{array}\right)[/tex]

3) [tex]A=\left(\begin{array}{ll}2 & 3\end{array}\right), \quad B=\left(\begin{array}{rr}-1 & 3 \\ 2 & 0\end{array}\right)[/tex];

4) [tex]A=\left(\begin{array}{r}-2 \\ 3\end{array}\right), B=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{3}{2} & -1\end{array}\right)[/tex];

5) [tex]A=\left(\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right), B=\left(\begin{array}{ll}1 & -1\end{array}\right)[/tex]

6) [tex]A=\left(\begin{array}{r}2 \\ -3\end{array}\right), B=\left(\begin{array}{ll}1 & -5\end{array}\right)[/tex]

7) [tex]A=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right), B=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)[/tex]

8) [tex]A=\left(\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right), B=\left(\begin{array}{rr}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right)[/tex];

9) [tex]A=\left(\begin{array}{lll}1 & 2 & 3 \\ 5 & 4 & 2\end{array}\right), B=\left(\begin{array}{llll}0 & 3 & 1 & 4 \\ 2 & 4 & 1 & 0 \\ 1 & 2 & 0 & 2\end{array}\right)[/tex]

10) [tex]A=\left(\begin{array}{rr}3 & 1 \\ 2 & 5 \\ 1 & -4\end{array}\right), B=\left(\begin{array}{rr}5 & -2 \\ 4 & 3\end{array}\right)[/tex]

11) [tex]A=\left(\begin{array}{rr}1 & i \\ -2 i & 0\end{array}\right), B=\left(\begin{array}{rr}i & -3 i \\ 0 & 1\end{array}\right)[/tex]

12) [tex]A=\left(\begin{array}{ccc}1+i & 1-i & i \\ 2 i & 1 & -3 i \\ 0 & 1+i & 1-i\end{array}\right), B=\left(\begin{array}{ccc}2 i & 1-i & 0 \\ 3 & i & 1 \\ -i & 0 & 1+i\end{array}\right)[/tex].[/tex]